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Cross-Newell equations for hexagons and triangles

Rebecca B. Hoyle
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge CB3 9EW, United Kingdom

~Received 18 June 1999!

The Cross-Newell equations for hexagons and triangles are derived for general real gradient systems, and are
found to be in flux-divergence form. Specific examples of complex governing equations that give rise to
hexagons and triangles and which have Lyapunov functionals are also considered, and explicit forms of the
Cross-Newell equations are found in these cases. The general nongradient case is also discussed; in contrast
with the gradient case, the equations are not flux divergent. In all cases, the phase stability boundaries and
modes of instability for general distorted hexagons and triangles can be recovered from the Cross-Newell
equations.

PACS number~s!: 05.45.2a, 47.20.Ky
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I. INTRODUCTION

Hexagons are a very common planform arising in patte
forming systems. The asymmetry between the centres
the edges of the hexagons leads to a favoring of hexag
patterns in situations where there is intrinsic asymme
such as in Be´nard-Marangoni convection@1–3# where the
top surface of the convecting layer is free and the bott
surface is in contact with a rigid boundary. Most natu
systems will have some degree of asymmetry, and he
hexagons are widely observed, not only in convection
periments, but also for example in vibrated granular lay
@4,5# and during directional solidification@6#. Triangular pat-
terns are more unusual, but are seen in some systems, su
vibrated granular layers@5#.

Cross and Newell@7# pioneered a method of describin
the behavior of a fully nonlinear roll pattern in an extend
system by following the evolution of the local phase, a
hence the wave vector, associated with the roll pattern a
varies in space and time. This method was further develo
by Passot and Newell@8# who regularized the Cross-Newe
equations outside the region of roll stability, introducing
order parameter equation to account correctly for the beh
ior of the pattern in regions where the amplitude is smal

The purpose of this paper is to apply ideas similar to th
of Cross and Newell@7# and Passot and Newell@8# to the
evolution of fully nonlinear hexagonal and triangular pa
terns in large aspect ratio systems, such as those see
experiments on Rayleigh-Be´nard convection in SF6 near the
thermodynamical critical point@9#.

The paper is structured as follows. Section II present
method of deriving the Cross-Newell equations for triang
and hexagons in a general real gradient system. The Cr
Newell equations for particular complex gradient systems
derived in Sec. III for hexagons and Sec. IV for triangle
The case of free hexagons and triangles is discussed in
V, and the general nongradient case in Sec. VI. Section
concludes and indicates some directions for future invest
tion.

II. DERIVATION OF THE CROSS-NEWELL EQUATIONS

It is assumed that fully developed hexagons or triang
can be described by a stationary solutionw5w0(x) of an
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equationwt5Lw1Nw, whereL andN are linear and non-
linear operators respectively, at least one of which is diff
ential, with variational structure such that

E dx dy wt52E dx dy
dG

dw
, ~1!

wherew andG(w) are real.
Hexagons and triangles are described by three wave

tors k1 , k2, and k3 forming a resonant triad such thatk1
1k21k350. In the case where the governing equatio
force this resonance to be maintained, the pattern can
described using two phasesu1 andu2 associated with two of
these wave vectorsk15“u1 andk25“u2. For fully nonlin-
ear triangles and hexagons, the hexagon amplitude and
total hexagon phasea5u11u21u3 ~where k352k12k2
5“u3) are determined adiabatically from the two phasesu1
andu2 except in the vicinity of defects where the amplitud
is small or when the driving stress parameter of the system
close to the critical value for pattern formation so that t
amplitude is small everywhere. In the ‘‘free’’ case discuss
in Sec. V, where the resonant triad may be broken, the he
gon amplitude is slaved to the three independent phasesu1 ,
u2, andu3, except when the amplitude is small.

In a large aspect ratio system, the size and orientation
the hexagons will typically change slowly in space and tim
To describe these changes, it is convenient to introduce la
scale phasesQ15eu1 , Q25eu2, wheree!1 is the inverse
aspect ratio of the box, and slow space and time scaleX
5ex, T5e2t. The local wave vectors are then given byk i
5“xu i5“XQ i , i 51,2.

The hexagon solution is now considered to be a funct
of the two phasesu1 and u2 and the slow space and tim
scales, such thatw[w(u1 ,u2 ;X,T). Hence the space an
time derivatives ofw are given by

“xw~u1 ,u2 ;X,T!5~k1]u11k2]u21e“X!w~u1 ,u2 ;X,T!,
~2!

] tw~u1,u2;X,T!5~eQ1T]u11eQ2T]u21e2]T!

3w~u1,u2;X,T!. ~3!

To leading order then the following equations hold
2506 ©2000 The American Physical Society
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wt5e$Q1T~]u1w0!1Q2T~]u2w0!%, ~4!

dw5~]u1w0!du11~]u2w0!du2 . ~5!
ra
o

ul
a

ilit
th
Substituting all this information into the governing equati
~1! and averaging overu1 andu2 gives, to leading order ine,
ndi-
eE dx dy$Q1T~]u1w0!1Q2T~]u2w0!%$~]u1w0!du11~]u2w0!du2%52E dx dy
]Ḡ

]k1
2
dk1

21
]Ḡ

]k2
2
dk2

21
]Ḡ

]~k1•k2!
d~k1•k2!,

~6!

where an overbar denotes the average. Remarking thatdk1
25d(“xu1•“xu1)52“xu1•“xdu152k1•“xdu1, and similarly that

dk2
252k2•¹xdu2 andd(k1•k2)5k1•“xdu21k2•“xdu1, the divergence theorem can be used with suitable boundary co

tions, to show that

eE dx dy$Q1T~]u1w0!1Q2T~]u2w0!%$~]u1w0!du11~]u2w0!du2%5eE dx dy“•H 2k1

]Ḡ

]k1
2J du11“•H 2k2

]Ḡ

]k2
2J du2

1eE dx dy“•H ~k1du21k2du1!
]Ḡ

]~k1•k2!
J , ~7!

where“[“X5e21(“x2k1]u12k2]u2). Sincedu1 anddu2 are arbitrary, it is possible to extract the phase equations

Q1Tu]u1w0u21Q2T~]u1w0!~]u2w0!5“•S 2k1

]Ḡ

]k1
2

1k2

]Ḡ

]~k1•k2!D , ~8!

Q2Tu]u2w0u21Q1T~]u1w0!~]u2w0!5“•S 2k2

]Ḡ

]k2
2

1k1

]Ḡ

]~k1•k2!D . ~9!

The phase stability boundaries for general distorted hexagons and triangles defined by wave vectorsk1 and k2 can be
recovered from the Cross-Newell equations by first writing the equations explicitly in terms of the phases to give

Q1Tu]u1w0u21Q2T~]u1w0!~]u2w0!5“•H 2“Q1

]Ḡ

]k1
2
„u“Q1u2,u“Q2u2,~“Q1•“Q2!…J

1“•H“Q2

]Ḡ

]~k1•k2!
~ u“Q1u2,u“Q2u2,„“Q1•“Q2!…J , ~10!

Q2Tu]u2w0u21Q1T~]u1w0!~]u2w0!5“•H 2“Q2

]Ḡ

]k2
2
„u“Q1u2,u“Q2u2,~“Q1•“Q2!…J

1“•H“Q1

]Ḡ

]~k1•k2!
„u“Q1u2,u“Q2u2,~“Q1•“Q2!…J , ~11!
as-
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and then settingQ15k1•X1Q̃1 andQ25k2•X1Q̃2, where
Q̃1 andQ̃2 are small. Linearizing inQ̃1 andQ̃2, and setting
Q̃15Q̂1esT1 i k̃•X and Q̃25Q̂2esT1 i k̃•X, with Q̂1 and Q̂2
real constants gives a dispersion relation for the growth-
eigenvaluess. Hence the stability boundaries and modes
instability can be found as in Refs.@10# and @11#. Direct
numerical integration of the Cross-Newell equations co
also be used to determine the region of stable hexagons
triangles, and comparison could be made with the stab
region for regular hexagons found by other numerical me
ods as in@12#.
te
f

d
nd
y
-

Ideally the governing equations should be real, as
sumed here, in order to allow the formation of disclinatio
on an individual set of rolls@8#. However, there do not ap
pear to be simple examples of real governing equati
which give fully nonlinear hexagons or triangles as an ex
stationary solution, and so in order to make further expl
analytical progress we shift our attention in the followin
section to complex governing equations which do inde
give hexagons. This is perhaps less of a handicap tha
would be in the case of rolls, since the canonical hepta-pe
defect of hexagons is made up of dislocations, which can
described by a complex order parameter.
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III. CROSS-NEWELL EQUATIONS FOR HEXAGONS

With slight modifications to the spatial derivative term
the standard complex amplitude equations for hexag
@13,14# can be used as the basic governing equations, giv

]zi

]t
5lzi1azi 11* zi 12* 2buzi u2zi

2g~ uzi 11u21uzi 12u2!zi1¹2zi , ~12!

wherel, a, b, and g are real constants, and where * d
notes complex conjugation. The hexagon solutions are
resented byw5Re(z11z21z3), zi5Rie

iu i, with i 51,2,3
and cyclic. Here the usual spatial derivatives have been
placed by¹2 in order to preserve the isotropy of the syste

There is a Lyapunov functional associated with the a
plitude equations, given by

L52l~ uz1u21uz2u21uz3u2!2a~z1z2z31z1* z2* z3* !

1 1
2 b~ uz1u41uz2u41uz3u4!1g~ uz1u2uz2u21uz2u2uz3u2

1uz3u2uz1u2!1u¹z1u21u¹z2u21u¹z3u2, ~13!

such that

]zi

]t
52

dL

dzi*
. ~14!

There are wave vectors associated with the phases acco
to k i5¹u i as before. A hexagonal or triangular pattern aris
when the sum of the three wave vectors is zero, i.e.k11k2
1k350. Hence the total phase( iu i[a(t) is a function of
time only.

The fully nonlinear hexagonal solution takes the formw
5R1 cosu11R2 cosu21R3 cosu3 where

05R1~l2k1
2!1aR2R3 cosa2bR1

32g~R2
21R3

2!R1 ,
~15!

05R2~l2k2
2!1aR3R1 cosa2bR2

32g~R3
21R1

2!R2 ,
~16!

05R3~l2k3
2!1aR1R2 cosa2bR3

32g~R1
21R2

2!R3 ,
~17!

05a sina, ~18!

hold, and where theRi are nonzero constants. Clearly ifa is
nonzero, as assumed in this section, the total phasea must
take the value 0 orp. If a is zero,a can take any value.

In the case of nonzeroa, there are only two independen
phases, which without loss of generality are taken to beu1
and u2. The third phaseu35a2u12u2 is then dependent
sincea is fixed.

As in the previous section, it is assumed that the wa
vectors vary slowly in space and time, so that it is possible
define large scale phasesQ i5eu i and long space and tim
scales such that “x5k1]u1

1k2]u2
1e“X and ] t

5e(Q1T]u1
1Q2T]u2

). The solution is expanded in the form

z[(z1 ,z2 ,z3)5z01e z̃11e2z̃21•••, where z0 is the fully
nonlinear hexagon solution above.
,
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o

To leading order, the Lyapunov functional for the ful
nonlinear hexagons takes the form

L52l~R1
21R2

21R3
2!22aR1R2R3 cosa1 1

2 b~R1
41R2

41R3
4!

1g~R1
2R2

21R2
2R3

21R3
2R1

2!1k1
2R1

21k2
2R2

21k3
2R3

2 . ~19!

Since k11k21k350 holds, k3
2 can be rewrittenk1

21k2
2

12k1•k2, and it is clear that theRi , a andL all depend only
on k1

2, k2
2, and k1•k2. Hence the variationdL in the

Lyapunov functional is given by

dL5
]L

]k1
2 dk1

21
]L

]k2
2 dk2

21
]L

]~k1•k2!
d~k1•k2!. ~20!

It is also clear that

dL5
]L

]zi*
dzi* 1

]L

]zi
dzi52

]zi

]t
dzi* 2

]zi*

]t
dzi ~21!

holds. Further, it can be seen that

dz0* 5~]u1
z0* !du11~]u2

z0* !du2 , ~22!

] tz5eQ1T~]u1
z0!1eQ2T~]u2

z0!1O~e2!, ~23!

hold. Substituting these into Eq.~21! gives

dL52e$Q1T~]u1
z0!1Q2T~]u2

z0!%•$~]u1
z0* !du1

1~]u2
z0* !du2%1c.c. ~24!

to leading order, where c.c. denotes complex conjugate. C
sidering *dL dx dy, where the integral is taken over th
whole domain, gives

E dx dye$Q1T~]u1
z0!1Q2T~]u2

z0!%•$~]u1
z0* !du1

1~]u2
z0* !du2%1c.c.

52E dx dy
]L

]k1
2 dk1

21
]L

]k2
2 dk2

21
]L

]~k1•k2!
d~k1•k2!

5eE dx dy“•S 2k1

]L

]k1
2 1k2

]L

]~k1•k2! D du1

1“•S 2k2

]L

]k2
2 1k1

]L

]~k1•k2! D du2 , ~25!

from which it is easy to identify the phase equations

Q1T~]u1
z0!•~]u1

z0* !1Q2T~]u2
z0!•~]u1

z0* !1c.c.

5“•S 2k1

]L

]k1
2 1k2

]L

]~k1•k2! D , ~26!

Q2T~]u2
z0!•~]u2

z0* !1Q1T~]u1
z0!•~]u2

z0* !1c.c.

5“•S 2k2

]L

]k2
2 1k1

]L

]~k1•k2! D . ~27!
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The straightforward substitutions

z05S R1eiu1

R2eiu2

R3ei (a2u12u2)
D , ~28!

]u1
z05S iR1eiu1

0

2 iR3ei (a2u12u2)
D , ~29!

]u2
z05S 0

iR2eiu2

2 iR3ei (a2u12u2)
D , ~30!

reduce the phase equations to

2~R1
21R3

2!Q1T12R3
2Q2T5“•S 2k1

]L

]k1
21k2

]L

]~k1•k2! D ,

~31!

2~R2
21R3

2!Q2T12R3
2Q1T5“•S 2k2

]L

]k2
21k1

]L

]~k1•k2! D .

~32!

Substituting Eqs.~15!–~18! into Eq. ~19! gives a simpler
expression for the Lyapunov functional

L5aR1R2R3 cosa2g~R1
2R2

21R2
2R3

21R3
2R1

2!

2 1
2 b~R1

41R2
41R3

4!, ~33!

which when differentiated with respect tok1
2 becomes

]L

]k1
2 5acosaS ]R1

]k1
2 R2R31R1

]R2

]k1
2 R31R1R2

]R3

]k1
2 D

22gS R1

]R1

]k1
2~R2

21R3
2!1R2

]R2

]k1
2 ~R3

21R1
2!

1R3

]R3

]k1
2 ~R1

21R2
2! D

22bS R1
3 ]R1

]k1
2 1R2

3]R2

]k1
2 1R3

3 ]R3

]k1
2 D . ~34!

Dividing the amplitude equations~15!–~17! through byR1 ,
R2 , R3 respectively and then differentiating gives

05211
a cosa

R1
2 S R1R2

]R3

]k1
21R3R1

]R2

]k1
2 2R2R3

]R1

]k1
2 D

22bR1

]R1

]k1
222gS R2

]R2

]k1
2 1R3

]R3

]k1
2 D , ~35!

05
a cosa

R2
2 S R2R3

]R1

]k1
21R1R2

]R3

]k1
2 2R3R1

]R2

]k1
2 D

22bR2

]R2

]k1
222gS R3

]R3

]k1
2 1R1

]R1

]k1
2 D , ~36!
05211
a cosa

R3
2 S R3R1

]R2

]k1
21R2R3

]R1

]k1
2 2R1R2

]R3

]k1
2 D

22bR3

]R3

]k1
222gS R1

]R1

]k1
2 1R2

]R2

]k1
2 D , ~37!

which when multiplied byR1
2, R2

2, R3
2, respectively, and

added give

052~R1
21R3

2!1a cosaS ]R1

]k1
2R2R31R1

]R2

]k1
2R3

1R1R2

]R3

]k1
2 D 22gS R1

]R1

]k1
2~R2

21R3
2!1R2

]R2

]k1
2 ~R3

21R1
2!

1R3

]R3

]k1
2 ~R1

21R2
2! D 22bS R1

3 ]R1

]k1
2 1R2

3]R2

]k1
2 1R3

3 ]R3

]k1
2 D ,

~38!

and hence

]L

]k1
2 5~R1

21R3
2!. ~39!

Similarly it is found that

]L

]k2
2 5~R2

21R3
2!, ~40!

]L

]~k1•k2!
52R3

2 , ~41!

and hence

~R1
21R3

2!Q1T1R3
2Q2T5“•@k1~R1

21R3
2!1k2R3

2#,
~42!

~R2
21R3

2!Q2T1R3
2Q1T5“•@k2~R2

21R3
2!1k1R3

2#,
~43!

which gives the Cross-Newell equations

~R1
2R2

21R2
2R3

21R3
2R1

2!Q1T5R2
2
“•~k1R1

22k3R3
2!

1R3
2
“•~k1R1

22k2R2
2!,

~44!

~R1
2R2

21R2
2R3

21R3
2R1

2!Q2T5R1
2
“•~k2R2

22k3R3
2!

1R3
2
“•~k2R2

22k1R1
2!

~45!

upon rearrangement.

IV. CROSS-NEWELL EQUATIONS FOR TRIANGLES

A similar approach can be adopted to derive Cro
Newell equations for triangles starting from the governi
equations
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]zi

]t
5zi$l2a1uzi u22a2~ uz1u21uz2u21uz3u2!

2a3~z1z2z31z1* z2* z3* !%

1zi 11* zi 12* $d2a3~ uz1u21uz2u21uz3u2!%1¹2zi .

~46!

These are the lowest order amplitude equations that pe
triangles as a stationary solution@14# and once again the
spatial derivatives have been chosen to ensure that the
erning equations are isotropic. Fully nonlinear stationary
angles satisfy

05l2ki
22a1uzi u22a2~ uz1u21uz2u21uz3u2!

2a3~z1z2z31z1* z2* z3* !, ~47!

05d2a3~ uz1u21uz2u21uz3u2!. ~48!

Writing zi5Rie
iu i as before witha5u11u21u3, gives

R1
25

~22k1
21k2

21k3
2!

3a1
1

d

3a3
, ~49!

R2
25

~k1
222k2

21k3
2!

3a1
1

d

3a3
, ~50!

R3
25

~k1
21k2

222k3
2!

3a1
1

d

3a3
, ~51!

cosa5
1

6a3R1R2R3
S 3l2~k1

21k2
21k3

2!2
~a113a2!d

a3
D .

~52!

The Lyapunov functional is given by

L52l~ uz1u21uz2u21uz3u2!1 1
2 ~a11a2!~ uz1u41uz2u4

1uz3u4!1a2~ uz1u2uz2u21uz2u2uz3u21uz3u2uz1u2! ~53!

1a3~ uz1u21uz2u21uz3u2!~z1z2z31z1* z2* z3* !

2d~z1z2z31z1* z2* z3* !1u¹z1u21u¹z2u21u¹z3u2,~54!

which gives, upon substitution forRi anda,

L52
1

3a1
$k1

41k2
414~k1•k2!21k1

2k2
222k1

2~k1•k2!

22k2
2~k1•k2!%1

2d

a3
~k1

21k2
21k1•k2!

2
3dl

a3
1

5d2~a113a2!

6a3
2 . ~55!

As before the phase equations are given by

2~R1
21R3

2!Q1T12R3
2Q2T5“•S 2k1

]L

]k1
21k2

]L

]~k1•k2! D ,

~56!
it

v-
i-

2~R2
21R3

2!Q2T12R3
2Q1T5“•S 2k2

]L

]k2
21k1

]L

]~k1•k2! D .

~57!

It is easily seen that

]L

]k1
2 52

1

3a1
~2k1

22k2
212k1•k2!1

2d

a3
, ~58!

]L

]k2
2 52

1

3a1
~2k1

212k2
212k1•k2!1

2d

a3
, ~59!

]L

]~k1•k2!
52

2

3a1
~4k1•k21k1

21k2
2!1

2d

a3
. ~60!

After some rearrangements and substitutions the Cr
Newell equations for triangles are found to be

~R1
2R2

21R2
2R3

21R3
2R1

2!Q1T

5R2
2
“•@k1~R1

212d/3a3!2k3~R3
212d/3a3!#

1R3
2
“•@k1~R1

212d/3a3!2k2~R2
212d/3a3!#,

~61!

~R1
2R2

21R2
2R3

21R3
2R1

2!Q2T

5R3
2
“•@k2~R2

212d/3a3!2k1~R1
212d/3a3!#

1R1
2
“•@k2~R2

212d/3a3!2k3~R3
212d/3a3!#.

~62!

V. FREE HEXAGONS AND TRIANGLES

The Cross-Newell equations take a different form wh
the total phasea is not constrained to remain fixed by th
governing equations, for example in the casea50 in Sec.
III. All three phasesu i are independent, with the following
consequent modifications of the analysis

¹x5k1]u1
1k2]u2

1k3]u3
1e“X , ~63!

] t5e~Q1T]u1
1Q2T]u2

1Q3T]u3
!, ~64!

dz0* 5]u1
z0* du11]u2

z0* du21]u3
z0* du3 , ~65!

which lead to the phase equations

Q1Tu]u1w0u25“•S 2k1

]Ḡ

]k1
2D , ~66!

Q2Tu]u2w0u25“•S 2k2

]Ḡ

]k2
2D , ~67!

Q3Tu]u3w0u25“•S 2k3

]Ḡ

]k3
2D . ~68!

In the hexagon case of Sec. III, the Cross-Newell equati
would be
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R1
2Q1T5“•~R1

2k1!, ~69!

R2
2Q2T5“•~R2

2k2!, ~70!

R3
2Q3T5“•~R3

2k3!. ~71!

These are the equations that would have been found for t
independent sets of rolls in the same system, as might h
been expected, since nothing in the analysis constrains
hexagons or triangles to remain hexagonal or triangular
particular, it is not to be expected that the conditionk11k2
1k350 will be maintained over long times.

For hexagons which remain everywhere exactly hexa
nal, such thatuk1u5uk2u5uk3u5k and R15R25R3[R, the
phase equations also take the form~69!–~71!, since the size
and orientation of a hexagon can then be determined fro
single wave vector, as in the roll case. However, this c
strains the hexagons to behave as a rotating, shrinking
expanding lattice, which is clearly not a realistic model f
most experiments.

VI. FLUX-DIVERGENCE FORM AND THE GENERAL
NONVARIATIONAL CASE

The Cross-Newell equations~8! and~9! for hexagons and
triangles in gradient systems are in flux-divergence fo
which has consequences for defect formation, as in the
of rolls @8#. Note that stationary solutions of Eqs.~8! and~9!
take the form

“•S 2k1

]Ḡ

]k1
2

1k2

]Ḡ

]~k1•k2!D 50, ~72!

“•S 2k2

]Ḡ

]k2
2

1k1

]Ḡ

]~k1•k2!D 50. ~73!

Following @8#, it is interesting to set
ot
e
s
ni
ee
ve
he
In

-

a
-
or
r

,
se

]Ḡ

]k1
2

5
]Ḡ

]k2
2

5
]Ḡ

]~k1•k2!
51, ~74!

which implies that“•k15“•k250 hold. Since the wave
vectors are gradients of the phases, it is clear that“3k1
5¹3k250 also hold, and that¹2Q15¹2Q250. The so-
lutions of these equations are the harmonic defects c
logued in@8#. Despite being energetically unreasonable, a
hence looking somewhat unphysical, because they con
features at wavelengths which lie outside the stable reg
they provide a good illustration of the topology of real d
fects. It is possible to construct a harmonic hepta-penta
fect by positioning two harmonic dislocations@8# on top of
each other, as shown in Fig. 1. The hepta-penta defect is
canonical defect of hexagons.

In the general nonvariational case, the Cross-New
equations can be written

FIG. 1. A harmonic hepta-penta defect. The figure shows c
tours of f (X)5cosQ11cosQ21cosQ3, where Q15R cos(a
1p/2)2(a1p/2), Q25R cos(a1p/6)2(a1p/6), Q352Q1

2Q2, and where (R,a) are polar coordinates forX.
t~k1
2 ,k2

2 ,k1•k2!Q1T5a1~k1
2 ,k2

2 ,k1•k2!“•k11a2~k1
2 ,k2

2 ,k1•k2!k1•“k11a3~k1
2 ,k2

2 ,k1•k2!k1•“k2

1a4~k1
2 ,k2

2 ,k1•k2!k1•“~k1•k2!1b1~k1
2 ,k2

2 ,k1•k2!“•k21b2~k1
2 ,k2

2 ,k1•k2!k2•“k1

1b3~k1
2 ,k2

2 ,k1•k2!k2•“k21b4~k1
2 ,k2

2 ,k1•k2!k2•“~k1•k2!, ~75!

t~k2
2 ,k1

2 ,k1•k2!Q2T5a1~k2
2 ,k1

2 ,k1•k2!“•k21a2~k2
2 ,k1

2 ,k1•k2!k2•“k21a3~k2
2 ,k1

2 ,k1•k2!k2•“k1

1a4~k2
2 ,k1

2 ,k1•k2!k2•“~k1•k2!1b1~k2
2 ,k1

2 ,k1•k2!“•k11b2~k2
2 ,k1

2 ,k1•k2!k1•“k2

1b3~k2
2 ,k1

2 ,k1•k2!k1•“k11b4~k2
2 ,k1

2 ,k1•k2!k1•“~k1•k2!. ~76!
for
The
in-
In contrast to the variational case, these equations cann
general be reduced to flux-divergence form, and henc
cannot be assumed that such general hexagonal pattern
have defects whose topology is given by that of harmo
defects.
in
it

will
c

VII. CONCLUSION

This paper has derived the Cross-Newell equations
triangles and hexagons in a general real gradient system.
resulting equations can be put into flux-divergence form,
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dicating that the topology of defects of such a hexago
pattern can be described by that of harmonic defects@8#. The
general nonvariational case, however, is not flux diverge
In both cases, the phase stability boundaries and mode
instability for general distorted hexagons and triangles
be recovered from the Cross-Newell equations.

An explicit analytical form for the Cross-Newell equa
tions is found for both hexagons and triangles in the c
where the governing equations are generalizations of the
responding complex amplitude equations.

This work suggests avenues for further investigation.
particular, it would be interesting to analyze the Cro
Newell equations in a general nonvariational system,
ev

A

l

t.
of
n

e
r-

n
-
d

also to integrate the phase equations numerically in orde
make a comparison with an integration of the full governi
equations, for example in order to compare the regions
stability of hexagons. A further interesting possibility is
use the Cross-Newell equations to investigate the simu
neous occurrence of up- and down-hexagons@15#. These av-
enues will form the basis of future work.
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