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Cross-Newell equations for hexagons and triangles
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The Cross-Newell equations for hexagons and triangles are derived for general real gradient systems, and are
found to be in flux-divergence form. Specific examples of complex governing equations that give rise to
hexagons and triangles and which have Lyapunov functionals are also considered, and explicit forms of the
Cross-Newell equations are found in these cases. The general nongradient case is also discussed; in contrast
with the gradient case, the equations are not flux divergent. In all cases, the phase stability boundaries and
modes of instability for general distorted hexagons and triangles can be recovered from the Cross-Newell
equations.

PACS numbdis): 05.45-a, 47.20.Ky

. INTRODUCTION equationw,= Lw+ Nw, where£ and\ are linear and non-
linear operators respectively, at least one of which is differ-

Hexagons are a very common planform arising in patternential, with variational structure such that
forming systems. The asymmetry between the centres and

the edges of the hexagons leads to a favoring of hexagonal 6G

patterns in situations where there is intrinsic asymmetry, f dx dy W:_f dXdyM: @
such as in Beard-Marangoni convectiofii—3] where the

top surface of the convecting layer is free and the bottonyherew and G(w) are real.

surface is in contact with a rigid boundary. Most natural Hexagons and triangles are described by three wave vec-
systems will have some degree of asymmetry, and hencers k,, k,, andks forming a resonant triad such thig
hexagons are widely observed, not only in convection ex-+k,+k,=0. In the case where the governing equations
periments, but also for example in vibrated granular layergorce this resonance to be maintained, the pattern can be
[4,5] and during directional solidificatioj6]. Triangular pat-  described using two phasés and 6, associated with two of
terns are more unusual, but are seen in some systems, suchygsse wave vectots, =V 6; andk,=V 6,. For fully nonlin-
vibrated granular layergs]. ear triangles and hexagons, the hexagon amplitude and the
Cross and Newell7] pioneered a method of describing total hexagon phasa= 6;+ 6,+ 65 (where ka=—k,—k
the behavior of a fully nonlinear roll pattern in an extended— v g,y are determined adiabatically from the two phages
system by following the evolution of the local phase, andanq g, except in the vicinity of defects where the amplitude

hence the wave vector, associated with the roll pattern as j§ small or when the driving stress parameter of the system is
varies in space and time. This method was further developeglose to the critical value for pattern formation so that the

by Passot and NeweflB] who regularized the Cross-Newell ampjitude is small everywhere. In the “free” case discussed
equations outside the region of roll stability, introducing anj, gec. V, where the resonant triad may be broken, the hexa-
order parameter equation to account correctly for the beha\@On amplitude is slaved to the three independent phages

ior of the pattern in regions where the amplitude is small. 0,, and 65, except when the amplitude is small.

The purpose of this paper is to apply ideas similar to those |, 4 |arge aspect ratio system, the size and orientation of
of Cross and Newel[7] and Passot and Newdi8] to the e hexagons will typically change slowly in space and time.
evolution of fully nonlinear hexagonal and ftriangular pat-T4 describe these changes, it is convenient to introduce large
terns in large aspect ratio systems, s'uch' as those seen dpgie phase®,=ed,, ©,=€f,, wheree<1 is the inverse
experiments on Rayleigh-Bard convection in Sfnear the aspect ratio of the box, and slow space and time scéles

thermodynamical critical poirfi9]. _ =ex, T=¢%. The local wave vectors are then given ky
The paper is structured as follows. Section Il presents a:Vx9i=Vx®i i=12.

method of deri\{ing the Cross-Newell .equations for triangles e hexagon solution is now considered to be a function
and hexagons in a general real gradient system. The Crosss the two phase®, and ¢, and the slow space and time

Newell equations for particular complex gradient systems arQcales, such thav=w(6,,6,:X,T). Hence the space and
derived in Sec. Il for hexagons and Sec. IV for triangles. e derivatives ofv are giveh by
The case of free hexagons and triangles is discussed in Sec.
V, and the general nongradient case in Sec. VI. Section VIIV,w(8;,60,;X,T)=(K1dp1+Kodgp+ €V )W( ;1,605 X,T),
concludes and indicates some directions for future investiga- (2)
tion.
FW( 01,02 X,T) = (€0 11991+ €O 70 5o+ €°d7)

II. DERIVATION OF THE CROSS-NEWELL EQUATIONS

XW(60q,605;X,T). 3)

It is assumed that fully developed hexagons or triangles

can be described by a stationary solutiwe=wy(x) of an  To leading order then the following equations hold
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W, = €{O 17(dg1Wo) + O 27(d Wo) }, (4)  Substituting all this information into the governing equation
(1) and averaging ove#; and 8, gives, to leading order ia,
OW=(dp1Wp) 661+ (9 gWg) 56;. 5)

G G G
€ | dx dy{017(dg1Wo) + O 57(9gaWo) H (d1Wo) 301+ (d4oWo) 56 =—fdxd — K+ — Ko+ ———— (k- k),
f YO 17(951Wo) + 0 7(d52Wo) H (9 1Wo) 861+ (9 92Wo) 565} y&ki 1 P 27 9(ky ko) (ki-k2)
(6)

where an overbar denotes the average. Remarkin@tﬁai 6(V,0,-V,0)=2V,0,-V,660,=2Kk,- V5664, and similarly that

5k2 2k,- V66, and 6(kq-ky)=k,-V,60,+k,-V,50,, the divergence theorem can be used with suitable boundary condi-
tions, to show that

oG
fdx dy{®1T(0"01W0)+®2T(302W0)}{(0701W0)5‘91+(0"02W0)5¢92}—ff dx dyv - [Zklak ]591+V
1

2k © o0
2(9k2 2

iG
+ef dx dyv - (k1592+k2591)m : @)

whereV=Vy=¢e }(V,—kyd,—Kydy,). Sincedd, and 56, are arbitrary, it is possible to extract the phase equations

G G
0 17 9 gaWo| 2+ O 57(d g1 Wo) (J goWo) =V - 2k1 +k207(k k)’ (8
k2 LY
5 IG G
O 7] 3 aWo|*+ O 17( 9 g1W0) (9 goWo) =V - 2k2 +k1— 9
d(Ky-Kp) |

The phase stability boundaries for general distorted hexagons and triangles defined by wavekyeatal&k, can be
recovered from the Cross-Newell equations by first writing the equations explicitly in terms of the phases to give

®1T|0701W0|2+®2T(0701Wo)(l992W0):V'{2V®1a (IVO4|%|VO,%(VO,-VO,))
ki

aG
V- VO,————(|VO,|%|V0,|*(VO,-VO,))/, (10
d(kq-Kp)
2 (96 2 2
O 51/ 9 goWol“+ O 17(9p1W0) (2Wo) =V - szakz VO,|%|V0,%(VO,-VO,))
2
G
+V- V0, -———(IV0,]%|VO,|%(V0,-VO,))(, (11
d(kq-ka)
|
and then settin@;=k,- X+ ©,; and®,=k,- X+ ©,, where Ideally the governing equations should be real, as as-

sumed here, in order to allow the formation of disclinations
0, and@zér(ka fmall Llneanzm%lr(;)%(and@z, and setting " individual set of roli$8]. However, there do not ap-
©,=0,e"T" X and ©,=0,e"T* X, with ©; and O, pear to be simple examples of real governing equations
real constants gives a d|sper3|on relation for the growth-ratvhich give fully nonlinear hexagons or triangles as an exact
eigenvaluesr. Hence the stability boundaries and modes ofstationary solution, and so in order to make further explicit
instability can be found as in Ref10] and [11]. Direct  analytical progress we shift our attention in the following
numerical integration of the Cross-Newell equations couldsection to complex governing equations which do indeed
also be used to determine the region of stable hexagons amgve hexagons. This is perhaps less of a handicap than it
triangles, and comparison could be made with the stabilityvould be in the case of rolls, since the canonical hepta-penta
region for regular hexagons found by other numerical methdefect of hexagons is made up of dislocations, which can be
ods as in12]. described by a complex order parameter.
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. CROSS-NEWELL EQUATIONS FOR HEXAGONS To leading order, the Lyapunov functional for the fully

With slight modifications to the spatial derivative terms, nonlinear hexagons takes the form

the standard complex amplitude equations for hexagonE )\(R2+R2+ R§)—2aR1R2R3 cosa+ lB(R4+ R‘2‘+R§)
[13,14] can be used as the basic governing equations, giving
5 +y(RIR3+ R3R3+ R3RY) + k2R3 + k3R3+ k3R3.  (19)
Z;

ot _)\Z+azl+lz|+2 B|ZI| Zi

Since k;+k,+ks;=0 holds, k3 can be rewrittenk?+k3
+ 2k, -k,, and it is clear that '[hEtI ,aandL all depend only
on k2, k2, and k;-k,. Hence the variationSL in the
Lyapunov functional is given by

~Y|zis1?+ 121422+ V27, (12

where\, «, B, and y are real constants, and where * de-

notes complex conjugation. The hexagon solutions are rep- L L aL

resented byw=Re(z;+2,+73), z=R;e'%, with i=1,2,3 5L:—25k§+—25k§+—5(k1-k2). (20)

and cyclic. Here the usual spatial derivatives have been re- k1 k3 d(K1-kp)

placed byV? in order to preserve the isotropy of the system.
There is a Lyapunov functional associated with the am-

plitude equations, given by

It is also clear that

5L_0’3L L 0L aziﬁ* 525 -
L=—N(|za|?+|20%+ |25]%) — a(212025+ 2 25 23) I e 7 e T Z - on (@D
+3B(|za|*+ |z + | z5|*) + (1 24|?| 2]+ | 2] *| 25| holds. Further, it can be seen that
215 |2 2 2 2
+|Z3| |Zl| )+|VZ]_| +|V22| +|VZ3 ’ (13) 523 :(50123)591_’_((90223)502, (22)
such that )
012= €0 17(0p,29) + €0 1(4,20) + O(e%), (23
&Zi _ oL
ot 8z 19 hold, Substituting these into E¢R1) gives

There are wave vectors associated with the phases according 0L =~ €{017(dy,25) + © 21(dy,20)} - {(95,25 ) 561
tok;=V 6; as before. A hexagonal or triangular pattern arises

when the sum of the three wave vectors is zero,kise: k, +(dy,25) 805} +c.C. (24)
+k3=0. Hence the total phasg;#;=a(t) is a function of
time only. to leading order, where c.c. denotes complex conjugate. Con-

The fully nonlinear hexagonal solution takes the fonm ~ sidering 6L dx dy, where the integral is taken over the
=R, cos#;+R, cosé,+R; cosd; where whole domain, gives

0=R;(\ —ki)+ aR,R3 cosa— SR — y(R5+ R3)Ry,

i VF aRaRs AR YR RIRy (15) dx dye{@17(dy,20) + O 21(d,20)}{(9p,25 ) 56,
0=Ry(A—k?) + aR3R; cosa— BRI~ y(R2+ RIR,, +(dy,25) 80,1+ C.C.
(16)

fd d o ok2+ o 5k2+—aL S(ky-ky)
o av see s 28 .
0=Rs(A—k2)+ aRyR, cosa— BR3— y(R2+ R)Rs, Y oKz o1t 2 72T Gk k) O

7

aL L
. = 2k +k
0=asina, (19) 4 dxdyv- ( Lak2 2 50k, k ))501
hold, and where th&; are nonzero constants. Clearlyaifis dL aL
nonzero, as assumed in this section, the total phaseist v 2k2§—kg+k1 3(kq-Ky) 002, 25

take the value O otr. If « is zero,a can take any value.

In the case of nonzera, there are only two independent from which it is easy to identify the phase equations
phases, which without loss of generality are taken tadbe
and 6,. The third phasg;=a— 0,— 6, is then dependent, @l‘r(aglzo)'((90123)"'@21'((99220)'((79123)+C.C.
sincea is fixed.

As in the previous section, it is assumed that the wave
vectors vary slowly in space and time, so that it is possible to
define large scale phasés=€6; and long space and time
scales such that V,=k;dy +kady,+€Vy and o O1(d,20) - (9,25)+ O 17(99,20) - (99,25) +C.C.
= e(lTa(,lJr 2T(902)- The solution is expanded in the form

L L
=V- <2k1 ﬁk2+kZM) (26)

7=(21,25,23) =29+ €2, + €22,+ - - -, where z, is the fully zv.<2k2‘9_|‘2+k1$)_ (27)
nonlinear hexagon solution above. oky T d(ky-kp)
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The straightforward substitutions

Rlei 01
zo=|  Rpe'" (28)
Rye! (3= 0102)
iR,e%1
(90120: 0 ’ (29)
_ | Rsel(a— 01— 02)
0
39,20~ iR,e! %2 , (30
—j R3ei(a_ 01-02)
reduce the phase equations to
5 ) aL JL
2(R1+ R3)®1T+ 2R3®2T: V. 2k107_|(:2l+ kzm ,
(31

L , aL oL
2(R5+R3)0,1+2R30 1=V 2k2(9—kg+klm .
(32

Substituting Eqs(15—(18) into Eq. (19) gives a simpler
expression for the Lyapunov functional

L= aR;R,R; cosa— y(RZR5+ R3R5+ R3R?)
—3B(RI+R3+R3),

which when differentiated with respect k§ becomes

(33

aL R, IR, IR,
[?_kf:acosa k R2R3+R1 k R3+R1R2_kz'

IR, IR,
—27( Rla—ki(RiﬂL R3)+ Rzﬁ—ki(RgﬂL R?)

9Rs
+R3&—k§(R§+R§)
IRy aR2 IRs
—2B(R§—kz+R e 3—kg). (34)
1

Dividing the amplitude equationd.5)—(17) through byR,
R,, R; respectively and then differentiating gives

0= a cosa RR &R3+R R IR, R.R R,
- RZ 2oz ke B ke
_opr, o g, R g TR 35
ﬁ 1 akZ Y 2 &k% 3 0ki ’ ( )
_ acosa R.R 5R1+R R JR3 R.R IR,
TR TP T ok T ke
IR, IR IR,
—2BRy—~ ﬁkz —2y|Rs3—~= akz +Ri—% k2 ) (36)

CROSS-NEWELL EQUATIONS FOR HEXAGONS AND TRIANGLES
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0— 14 a cosa R.R IR, FRRy L IR, _RR IR
= —2—R3 3 1(9_kf Re gz ~RiR 57
_opr, Ry [ e g IR 3
B 3(9k2 Y 1ae TRz (37)

which when multiplied byR?, R2, RZ, respectively, and
added give

=—(R}+R3)+ a cosa

R Ret R R
gkg a3 K3

IR3
4ﬂﬁ%¥ 2%&—ﬁR >+& (R+ﬁ>
IR JRy IR, L dRs
+R3(9_k§(Ri+R§) 2,3<R3 akz +R2(9k2 R§—> e )
(38)
and hence
- (RE+RY) (39)
K2 1T R3).
Similarly it is found that
L 2 2
ﬂ_kg =(R3+R3), (40)
_r =2R? 41
ik kg 2R 4y

and hence

(RI+R5)O 11+ R30,7=V - [ky(RE+R3) +k R3],
(42)

(R5+R%) 0,1+ R30,1=V - [ka(R5+R3) + Kk R3],
(43

which gives the Cross-Newell equations
(RERS+ RERS+R3RY) O 11 =R5V - (k; R —k3R3)
+REV- (k1 RE—koRY),
(44)
(RZR3+ R3R3+ R3R?) @ ,1=R3V - (k,R3— k3R3)
+REV - (koRE—kyR?E)
(45)

upon rearrangement.

IV. CROSS-NEWELL EQUATIONS FOR TRIANGLES

A similar approach can be adopted to derive Cross-
Newell equations for triangles starting from the governing
equations
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0z,
T =z {h—ayfa - aa(|2i+ 2+ 2ol

—ag(212p23+ 212573 )}
+Z¥ 178l 0—ag(|zy|?+]2,] P+ | 252} + VP27
(46)
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These are the lowest order amplitude equations that permit

triangles as a stationary solutidd4] and once again the

spatial derivatives have been chosen to ensure that the gov-
erning equations are isotropic. Fully nonlinear stationary tri-

angles satisfy
0=\ —k?—ay|z|*~ap(|z1] >+ *+25]?)
—as(212,23+ 2y 25 7%), (47
0=6—as(|z1|*+|z|*+]23]?). (48)

Writing z;=R;e'’ as before witha= 6;+ 6,+ 65, gives

R§:%+3—i, (50)
REZWJ%—;’ (51

cosa= g5 p - 3N—(K2+k3+k3) — @ :
(52)

The Lyapunov functional is given by
L=—N(|z4|*+ 25|+ |z5|%) + 3(ar+@p) (|za] *+]2o]*

+|zg| ) + (|24 |2|2] * + | 22] | z5|*+ | 23] * 4| (53)

+ag(|zy|2+2,) %+ 2302 (212025+ 25 25 25)
— 8212923+ ZY 25 25) + |V 24 |2+ |V 2,| >+ |V 25|12, (54)

which gives, upon substitution fd®; anda,

1
L=— 3—al{k‘1‘+ K3+ 4(Ky - ko) 2+ Kkik5— 2k(Ky - ko)

2 26 2 2
—2Kks ko) + (G + G+ ko)

36\ . 56%(a; +3ay)

ag 6a3 ©9
As before the phase equations are given by
> 5 dL aL
2(R1+ R3)®1T+2R32T:V' 2k1(9—k:2l+k2m y

(56)
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JL oL
2, p2 2 _v.
2(R2+R2)@ 1+ 2R20 1=V 2k2,9_k§+kla(kl-k2) .
(57)
It is easily seen that
r__1 2k2— K2+ 2k, -k +25 58
o’*_kf_3_al(12 1'2)a—3, (58)
o* K2+ 2k2+ 2k, -k +25 59
ﬁ_kg__S_al(_ 1 5 1-Kz) a3’ (59
8L—24kkk2k225 60
m——?,—al( 1Ktk 2)+a—3- (60)

After some rearrangements and substitutions the Cross-
Newell equations for triangles are found to be

(RER3+RERS+RERD) @11
=R3V -[ki(R}+26/3a3) — ka(R5+26/3a3)]
+R3V - [ki(RI+26/3a3) — ko(R5+268/3a3)],
(61)
(RER3+RER3+ RERT) @1
=R2V -[ko(R3+26/3a3) — ki (R¥+26/3a3)]
+R2V -[ko(R3+26/3a3) —k3(R3+26/3a3)].
(62)

V. FREE HEXAGONS AND TRIANGLES

The Cross-Newell equations take a different form when
the total phase is not constrained to remain fixed by the
governing equations, for example in the case 0 in Sec.

Ill. All three phasest; are independent, with the following
consequent modifications of the analysis

VX: k1a01+ k2(902+ k3(903+ EVX, (63)
l?t: 6(11-&91-%- 2T(902+ @31‘(903), (64)
825 = 9,25 801+ 94,25 80,7+ 04,25 503, (65)
which lead to the phase equations

— IG
®1T|(901W0| :V 2k1_2 y (66)

k3

— iG
O27]dgaWo|*=V - | 2ka— |, (67)

ks

— iG
O 37 dgaWo| =V -| 2kg— |. (68)

In the hexagon case of Sec. lll, the Cross-Newell equations
would be
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R0 ,7=V - (Rik,), (69)
R30,7=V - (R3ky), (70)
R3037=V - (R3ks). (77)

These are the equations that would have been found for three
independent sets of rolls in the same system, as might have
been expected, since nothing in the analysis constrains the
hexagons or triangles to remain hexagonal or triangular. In
particular, it is not to be expected that the conditign+k,
+k3=0 will be maintained over long times.

For hexagons which remain everywhere exactly hexago-
nal, such thatk,|=|k,|=|ks|=k andR;=R,=R3=R, the
phase equations also take the fo{®9)—(71), since the size
and orientation of a hexagon can then be determined from a
single wave vector, as in the roll case. However, this con- ) _
strains the hexagons to behave as a rotating, shrinking, or FIG. 1. A harmonic hepta-penta defect. The figure shows con-

. . C o tours of f(X)=cos®;+cos@,+cosO; where 0;=Rcosf
expanding lattice, which is clearly not a realistic model for+7ﬂ2)7(a+ﬂ/2)’ ©,= R cosie+/6)— (a+ ml6), ©s= -0,
most experiments.

—0,, and where R,a) are polar coordinates fof.

VI. FLUX-DIVERGENCE FORM AND THE GENERAL iG  J9G 9G
NONVARIATIONAL CASE — == =1, (74)
okz  oks  d(ki-kp)

The Cross-Newell equatiori8) and(9) for hexagons and o ]
triangles in gradient systems are in flux-divergence formWhich implies thatV-k,=V-k,=0 hold. Since the wave
which has consequences for defect formation, as in the cayd@ctors are gradients of the phases, it is clear Watk,

of rolls [8]. Note that stationary solutions of Eq8) and(9) =V Xkz=0 also hold, and tha¥*@;=V?®,=0. The so-
take the form lutions of these equations are the harmonic defects cata-
logued in[8]. Despite being energetically unreasonable, and
G G hence looking somewhat unphysical, because they contain
V. 2k1—2+k2—) =0, (72)  features at wavelengths which lie outside the stable region,
k1 d(Ky-kz) they provide a good illustration of the topology of real de-

fects. It is possible to construct a harmonic hepta-penta de-
fect by positioning two harmonic dislocatiofi8] on top of
=0. (73) each other, as shown in Fig. 1. The hepta-penta defect is the
canonical defect of hexagons.
In the general nonvariational case, the Cross-Newell
Following [8], it is interesting to set equations can be written

aG K JG
o2 ke k)

7(k2 k3, k1 -Kp) O 11= a1 (K3 K3,k -Ko) V- kq+ an(K2 K3, Ky ko) Ky - VK + ag(k2,k3,kq - ko) ky- Vs,
+ ay(kZ k3, ky-Kko)ky- V(Kq-kp)+ B1(K2 k3, kq- ko) V - Ko+ Bo(k K3 Ky - Ko)ky- Vg
+ Ba(kT, k5 K1 Ko)Ka- Vko+ Ba(kT kS Ky Ko)Ka- V(K- ko), (75
7(K5 K K1 ko) O a7= @y (K5, K K1 ko) V- Ko+ arp(K3 KT Ky ko) k- Vo + ars(K3 KT Ky - ka)kp- Vg
+ay(K3,K5 ki Ko)Ka- V(Ky-Ko) + B1(K5 KT, K1 Ko) V- Ky + (K5 KE Ky -Ko)Ky - VKy
+ B3(K3,KZ Ky Ko)Ky VKy+ Ba(k5 kT Ky Ko)ky- V(Kg-Ky). (76)

In contrast to the variational case, these equations cannot in VIl. CONCLUSION

general be reduced to flux-divergence form, and hence it

cannot be assumed that such general hexagonal patterns will This paper has derived the Cross-Newell equations for
have defects whose topology is given by that of harmonidriangles and hexagons in a general real gradient system. The
defects. resulting equations can be put into flux-divergence form, in-
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dicating that the topology of defects of such a hexagonahlso to integrate the phase equations numerically in order to
pattern can be described by that of harmonic defig&jtsThe = make a comparison with an integration of the full governing
general nonvariational case, however, is not flux divergentequations, for example in order to compare the regions of
In both cases, the phase stability boundaries and modes efability of hexagons. A further interesting possibility is to
instability for general distorted hexagons and triangles camse the Cross-Newell equations to investigate the simulta-
be recovered from the Cross-Newell equations. neous occurrence of up- and down-hexagdrig. These av-

An explicit analytical form for the Cross-Newell equa- enues will form the basis of future work.
tions is found for both hexagons and triangles in the case
where the governing equations are generalizations of the cor-
responding complex amplitude equations.

This work suggests avenues for further investigation. In  The author would like to thank Alan Newell and Thierry
particular, it would be interesting to analyze the Cross-Passot for interesting and helpful discussions. This work was
Newell equations in a general nonvariational system, angupported by King’s College, Cambridge.
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